作者单位
摘要
1 上海理工大学光电信息与计算机工程学院,上海 200093
2 釜山国立大学物理系,韩国釜山 46241
光学轨道角动量(OAM)可以纵向OAM的形式存在于空间涡旋光束中,或以横向OAM的形式存在于时空光涡旋波包中。与涡旋光束不同,时空光涡旋波包在传播过程中同时受到衍射和色散效应的影响,造成波包在时空域内的展宽,并且时空光涡旋波包携带的横向OAM也会在传播过程中分裂。这两点限制了横向OAM在其他研究领域的应用。本文引入并研究了携带横向OAM的三维时空局域波包,此波包可以同时克服衍射与色散效应造成的时空域三维变化。在传播过程中,该时空局域波包的时空域分布不变,且在遇到障碍物后也能快速重新恢复到原有的状态,具有传播不变以及自恢复的特性。本文对时空局域波包的传播过程以及经过障碍物后的恢复过程进行了数值模拟仿真,证实了其传播不变特性和自恢复特性。这种携带横向OAM的三维时空局域波包为横向OAM未来的利用提供了新的机遇,有望应用于光通信、量子光学、光学成像等领域。
横向光学轨道角动量 三维时空局域波包 传播不变 自恢复 
光学学报
2024, 44(10): 1026018
Author Affiliations
Abstract
1 School of Physical Science and Technology, Soochow University, Suzhou 215006, China
2 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
3 Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
4 Shandong Joint Research Center of Light Manipulation Science and Photonics Integrated Chip of East China Normal University and Shandong Normal University, East China Normal University, Shanghai 200241, China
5 e-mail: xylu@suda.edu.cn
6 e-mail: yangjian_cai@163.com
7 e-mail: zhaochengliang@suda.edu.cn
Fractional vortex beams exhibit a higher degree of modulation dimensions than conventional vortices, thus inheriting superior anti-turbulent transmission properties through the incorporation of additional coherence modulation. However, aliasing the mixed modes induced by coherence degradation makes the quantitative measurement of the topological charge in fractional vortex beams challenging. In this study, a coherence phase spectrum was introduced, and experimental demonstrations to quantitatively determine the fractional topological charge of partially coherent fractional vortex beams were performed. By leveraging the four-dimensional measurement of a partially coherent light field, the source coherence function was inversely reconstructed, and fractional topological charges were determined with high precision by extracting the phase spectrum of the coherence function. Laguerre–Gaussian, elliptical Gaussian, and plane-wave-fraction vortex beams with various degrees of coherence were used to demonstrate measurement precision. The proposed method is applicable to X-rays and electron vortices. It has potential applications in optical encryption, high-capacity optical communication, and quantum entanglement.
Photonics Research
2024, 12(1): 33
Author Affiliations
Abstract
1 Shanghai Key Laboratory of Modern Optical System, Engineering Research Center of Optical Instrument and System (Ministry of Education), School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2 Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
3 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
4 e-mail: qwzhan@usst.edu.cn
In this study, we present a method for free-space beam shaping and steering based on a silicon optical phased array, which addresses the theoretical limitation of traditional bulk optics. We theoretically analyze the beam propagation properties with changes in the applied phase. Different beam profiles can be shaped by varying the phase combination, while a high-order quasi-Bessel beam can be generated with a cubic change to the phase modulation. The simulated results are validated further experimentally, and they match one another well. Beam steering can be achieved with a field of view as large as 140°, which has potential benefits for practical applications. The presented method is expected to have broad application prospects for optical communications, free-space optical interconnects, and light detection and ranging.
Photonics Research
2023, 11(12): 2093
Author Affiliations
Abstract
1 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2 Zhangjiang Laboratory, Shanghai 201204, China
Optical skyrmions are quasiparticles with nontrivial topological textures that have significant potential in optical information processing, transmission, and storage. Here, we theoretically and experimentally achieve the conversion of optical skyrmions among Néel, Bloch, intermediate skyrmions, and bimerons by polarization devices, where the fusion and annihilation of optical skyrmions are demonstrated accordingly. By analyzing the polarization pattern in Poincaré beams, we reveal the skyrmion topology dependence on the device, which provides a pathway for the study of skyrmion interactions. A vectorial optical field generator is implemented to realize the conversion and superposition experimentally, and the results are in good agreement with the theoretical predictions. These results enhance our comprehension of optical topological quasiparticles, which could have a significant impact on the transfer, storage, and communication of optical information.
Photonics Research
2023, 11(12): 2042
Author Affiliations
Abstract
1 Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China
2 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
We propose a new type of dispersion-flattened waveguide without a slot-assisted structure that can obtain an ultra-flat group velocity dispersion profile with five or six zero-dispersion wavelengths in the mid-infrared region. The dispersion profile becomes less sensitive to the waveguide dimensions due to the absence of the slot-assisted structure, making waveguide fabrication more friendly. The dispersion profile varies between -0.472 and 0.365ps/(nm · km) over a 2665 nm bandwidth from 2885 nm to 5550 nm with a flatness of 3183.99 nm2 · km/ps. Two different combinations of materials are demonstrated for dispersion flattening of the proposed waveguide structures. We also provide design guidance for the proposed waveguide structures with other combinations of materials.
integrated optical devices waveguides dispersion 
Chinese Optics Letters
2023, 21(10): 101302
作者单位
摘要
1 上海理工大学 光电信息与计算机工程学院,上海 200093
2 上海理工大学 上海市现代光学系统重点实验室,上海 200093
3 张江实验室,上海 201204
利用Debye积分,研究了三个相互正交的轨道角动量(包括两个正交的横向轨道角动量以及一个纵向轨道角动量)光场在紧聚焦条件下的复杂耦合现象,并演示了焦场中相位奇点在三维时空间中的演化。此外,还研究了具有不同拓扑荷数的纵向轨道角动量对聚焦波包整体轨道角动量指向的影响。数值结果表明,聚焦波包的整体轨道角动量指向可由纵向轨道角动量的拓扑荷数进行调控,进而实现紧聚焦时空波包的轨道角动量指向可控。这种角动量指向可控的时空波包在光学微操作、微纳加工、自旋-轨道耦合以及量子通信等领域具有潜在的应用价值。
时空光学涡旋 横向轨道角动量 纵向轨道角动量 紧聚焦 相位奇点 Spatiotemporal optical vortex Transverse orbital angular momentum Longitudinal orbital angular momentum Tight focusing Phase singularity 
光子学报
2023, 52(7): 0752305
Author Affiliations
Abstract
1 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2 Zhangjiang Laboratory, Shanghai 201204, China
Spatiotemporal optical vortex (STOV) wavepacket carrying transverse photonic orbital angular momentum (OAM) has been extensively studied in the past few years. In this Letter, we propose and study a novel STOV wavepacket with multiple phase singularities embedded in different space–time domains using analytical and numerical approaches. By tuning different parameters used for designing the wavepacket, it is possible to engineer both the magnitude and orientation of the photonic OAM in space–time. The vectorially controllable OAM will pave new avenues and facilitate applications such as novel optical communication, studying complicated quantum systems, and spin-and-OAM interactions.
spatiotemporal optical vortices photonic orbital angular momentum ultrafast optics 
Chinese Optics Letters
2023, 21(8): 080003
Yunqing Jiang 1,2†Hongqing Li 2,3†Xiaoqiang Zhang 1,2,*Fan Zhang 1,2[ ... ]Weisheng Zhao 1,2
Author Affiliations
Abstract
1 School of Integrated Circuit Science and Engineering, Hefei Innovation Research Insititute, Beihang University, Beijing 100191, China
2 Anhui High Reliability Chips Engineering Laboratory, Hefei 230013, China
3 School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
4 Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China
5 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
Spectral fingerprint and terahertz (THz) field-induced carrier dynamics demands the exploration of broadband and intense THz signal sources. Spintronic THz emitters (STEs), with high stability, a low cost, and an ultrabroad bandwidth, have been a hot topic in the field of THz sources. One of the main barriers to their practical application is lack of an STE with strong radiation intensity. Here, through the combination of optical physics and ultrafast photonics, the Tamm plasmon coupling (TPC) facilitating THz radiation is realized between spin THz thin films and photonic crystal structures. Simulation results show that the spectral absorptance can be increased from 36.8% to 94.3% for spin THz thin films with TPC. This coupling with narrowband resonance not only improves the optical-to-spin conversion efficiency, but also guarantees THz transmission with a negligible loss (4%) for the photonic crystal structure. According to the simulation, we prepared this structure successfully and experimentally realized a 264% THz radiation enhancement. Furthermore, the spin THz thin films with TPC exhibited invariant absorptivity under different polarization modes of the pump beam and weakening confinement on an obliquely incident pump laser. This approach is easy to implement and offers possibilities to overcome compatibility issues between the optical structure design and low energy consumption for ultrafast THz opto-spintronics and other similar devices.
Photonics Research
2023, 11(6): 1057
Author Affiliations
Abstract
1 University of Shanghai for Science and Technology, School of Optical-Electrical and Computer Engineering, Shanghai, China
2 Zhangjiang Laboratory, Shanghai, China
3 University of Shanghai for Science and Technology, Shanghai Key Laboratory of Modern Optical System, Shanghai, China
4 Pusan National University, Department of Physics, Busan, Republic of Korea
Spatiotemporal optical vortex (STOV) pulses can carry transverse orbital angular momentum (OAM) that is perpendicular to the direction of pulse propagation. For a STOV pulse, its spatiotemporal profile can be significantly distorted due to unbalanced dispersive and diffractive phases. This may limit its use in many research applications, where a long interaction length and a tight confinement of the pulse are needed. The first demonstration of STOV pulse propagation through a few-mode optical fiber is presented. Both numerical and experimental analysis on the propagation of STOV pulse through a commercially available SMF-28 standard telecommunication fiber is performed. The spatiotemporal phase feature of the pulse can be well kept after the pulse propagates a few-meter length through the fiber even with bending. Further propagation of the pulse will result in a breakup of its spatiotemporal spiral phase structure due to an excessive amount of modal group delay dispersion. The stable and robust transmission of transverse photonic OAM through optical fiber may open new opportunities for transverse photonic OAM studies in telecommunications, OAM lasers, and nonlinear fiber-optical research.
photonic orbital angular momentum spatiotemporal optical vortices multimode fiber 
Advanced Photonics
2023, 5(3): 036002
Tao Zhuang 1Haifeng Hu 1,2,3,*Qiwen Zhan 1,2,3,**
Author Affiliations
Abstract
1 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2 Zhangjiang Laboratory, Shanghai 201204, China
3 Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
The chiral feature of an optical field can be evaluated by the parameter of g-factor enhancement, which is helpful to enhance chiroptic signals from a chiral dipole. In this work, the superchiral spot has been theoretically proposed in metal-insulator-metal waveguides. The g-factor enhancement of the superchiral spot can be enhanced by 67-fold more than that of circularly polarized light, and the spot is confined in the deep wavelength scale along each spatial dimension. Moreover, the position of the superchiral spot can be tuned by manipulating the incident field. The tunable superchiral spot may find applications in chiral imaging and sensing.
circular dichroism superchiral spot radially polarized beam metal-insulator-metal waveguide 
Chinese Optics Letters
2023, 21(1): 013601

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!